Disclosure Avoidance and the 2020 Decennial Census

David Van Riper

vanriper@umn.edu @dcvanriper

User Experience Accessing Disaggregated Racial/Ethnic Data National Network of Health Survey's Data Disaggregation Workshop November 18, 2020

Protecting the Confidentiality of America's Statistics: Adopting Modern Disclosure Avoidance Methods at the Census Bureau

Fri Aug 17 2018

WRITTEN BY: DR. JOHN M. ABOWD, CHIEF SCIENTIST AND ASSOCIATE DIRECTOR FOR RESEARCH AND METHODOLOGY

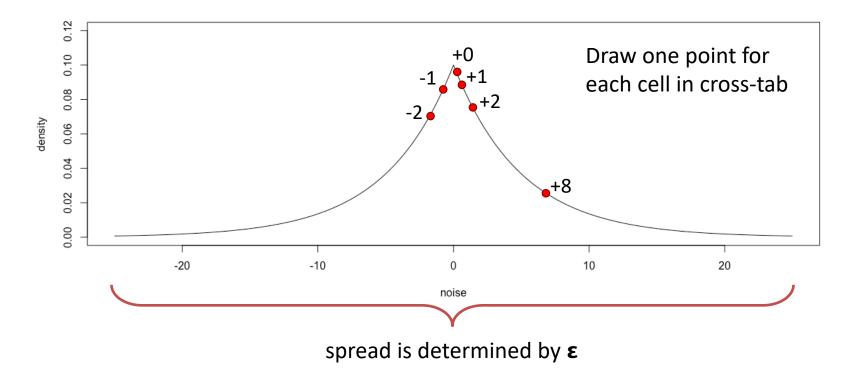
Outline

- How is differential privacy implemented?
- How does this new disclosure avoidance technique impact public health analyses?

HOW IS DIFFERENTIAL PRIVACY IMPLEMENTED?

IPUMS.ORG

"True" microdata


<u>Sex</u>	<u>School</u>	<u>Sex</u>	<u>School</u>
Male	Never	Female	Never
Male	Never	x4 🖌 🗄	
	Never	Female	Never
Male	Attending		Attending
x12	Attending Attending	x17 √ ⋮	
	•	Female	Attending
-	Attending	Female	
Male	Past	x31	
x33 〈	•	x31 Female	Past
L Male	Past		

Construct cross-tabs from "true" data

	School Attendance		
	Never	Attending	Past
Male	3	12	33
Female	4	17	31

Population = 100

Draw noise from Laplace distribution

Add noise to cross-tab

	School Attendance		
	Never	Attending	Past
Male	3 - 1 = 2	12 + 0 = 12	33 + 1 = 34
Female	4 + 8 = 12	17 + 2 = 19	31 - 2 = 29

Sum = 108

POLICY DECISIONS

Policy decisions

- Global privacy loss budget (ε)
- Fractional allocations
- Invariants and constraints
- Post-processing

Global privacy loss budget

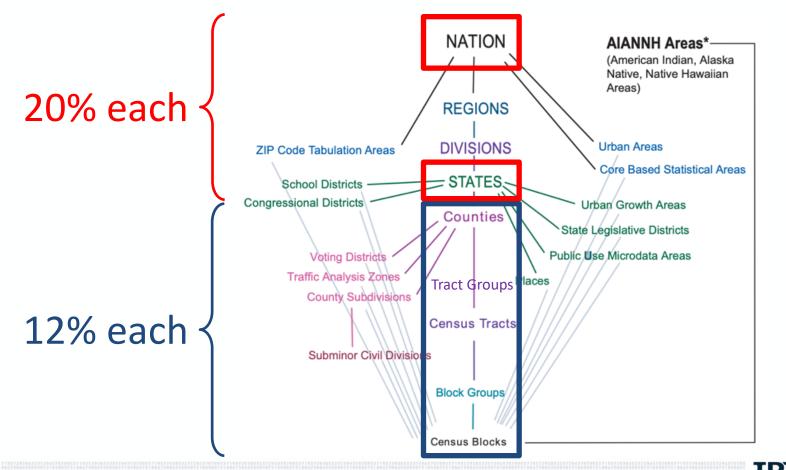
Global privacy loss budget

- ε = 6.0

• Person tables

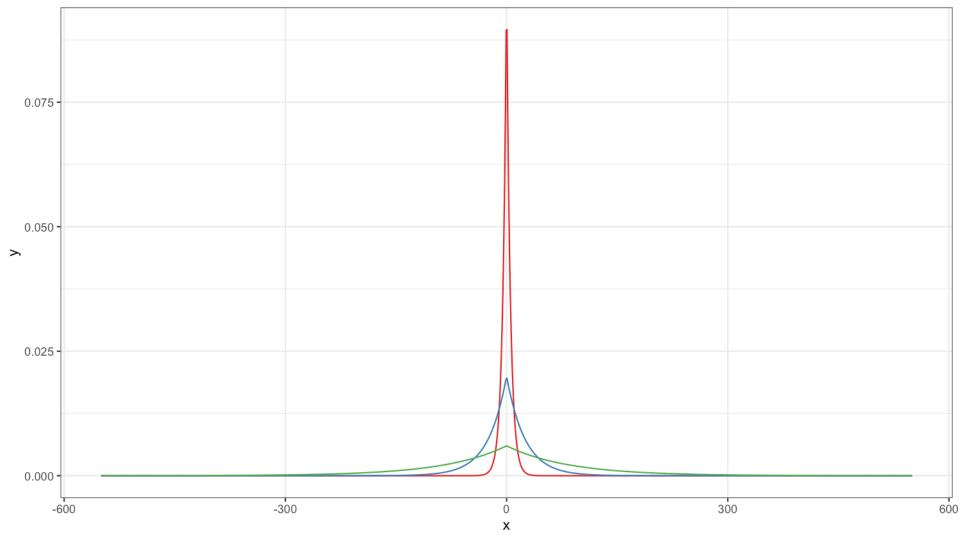
- ε = 4.0

Housing tables


- ε = 2.0

IPUMS ORG

Fractional allocations


- Geographic levels
- Queries

Query	Allocation (%)
Voting age * Hispanic * Race * Citizen	50
Household – Group quarters	20
Detailed	10
Sex * Age (single year of age)	5
Sex * Age (4-year age bins)	5
Sex * Age (16-year age bins)	5
Sex * Age (64-year age bins)	5

IPUMS.ORG

Invariants and Constraints

Invariants are counts not subject to noise injection

2010 Decennial Invariants	2010 Demonstration Data Invariants
Total population (block)	Total population (state)
Total housing units (block)	Total housing units (block)
Group quarters count (block)	Group quarters count (block)
Group quarters type count (block)	Group quarters type count (block)
Occupancy status (block)	
Voting age population (block)	

2010 Decennial Invariants	2010 Demonstration Data Invariants
Total population (block)	Total population (state)
Total housing units (block)	Total housing units (block)
Group quarters count (block)	Group quarters count (block)
Group quarters type count (block)	Group quarters type count (block)
Occupancy status (block)	
Voting age population (block)	

IPUMS.ORG

Invariants and Constraints

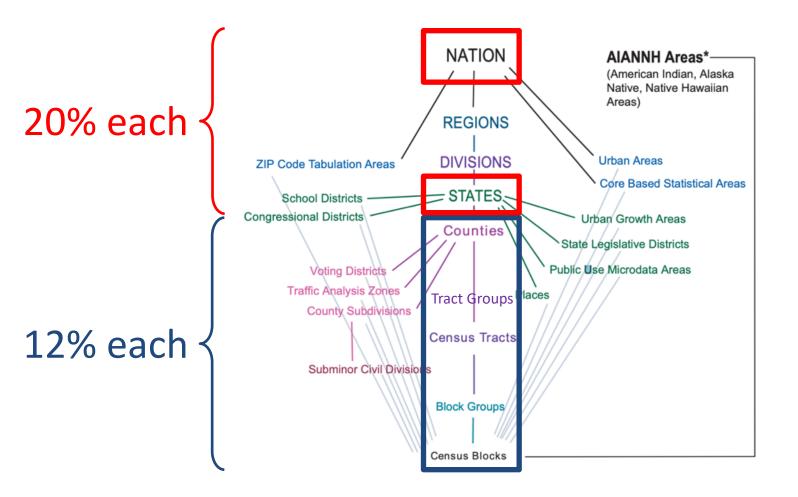
- Invariants are counts not subject to noise injection
- Constraints

Invariants and Constraints

- Invariants are counts not subject to noise injection
- Constraints
 - Non-negativity
 - Consistency

Post-processing

 Non-negative least squares + constraints = positive bias for small counts and negative bias for large counts


ANALYZING DIFFERENTIALLY PRIVATE 2010 CENSUS DATA

Data

- 2010 Summary File 1
- Vintage 1 (October 2019)
- Vintage 2 (June 2020)

Comparisons

- Comparing data from vintage 1 and 2 with data from Summary File 1
- Summary File 1 essentially serves as our "ground truth"
 - Acknowledging that prior disclosure avoidance techniques introduced error into SF1

Vintage 1

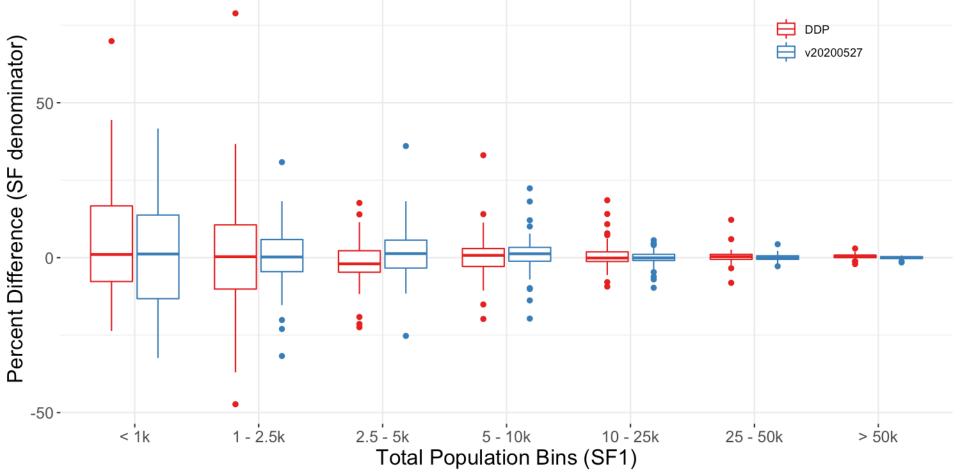
Vintage 2

Query	Allocation (%)	Query	Allocation (%)
Voting age * Hispanic * Race * Citizen	50	Total population	30
Relation to HH/Group quarters	20	Voting age * Hispanic * Race	29
Detailed	10	Age * Sex * Hispanic * Race	25
Sex * Age (single year of age)	5	Relation to HH/Group quarters	15
Sex * Age (4-year age bins)	5	Detailed	1
Sex * Age (16-year age bins)	5		
Sex * Age (64-year age bins)	5		

Vintage 1

Vintage 2

Query	Allocation (%)	Query	Allocation (%)
Voting age * Hispanic * Race * Citizen	50	Total population	30
Relation to HH/Group quarters	20	Voting age * Hispanic * Race	29
Detailed	10	Age * Sex * Hispanic * Race	25
Sex * Age (single year of age)	5	Relation to HH/Group quarters	15
Sex * Age (4-year age bins)	5	Detailed	1
Sex * Age (16-year age bins)	5		
Sex * Age (64-year age bins)	5		

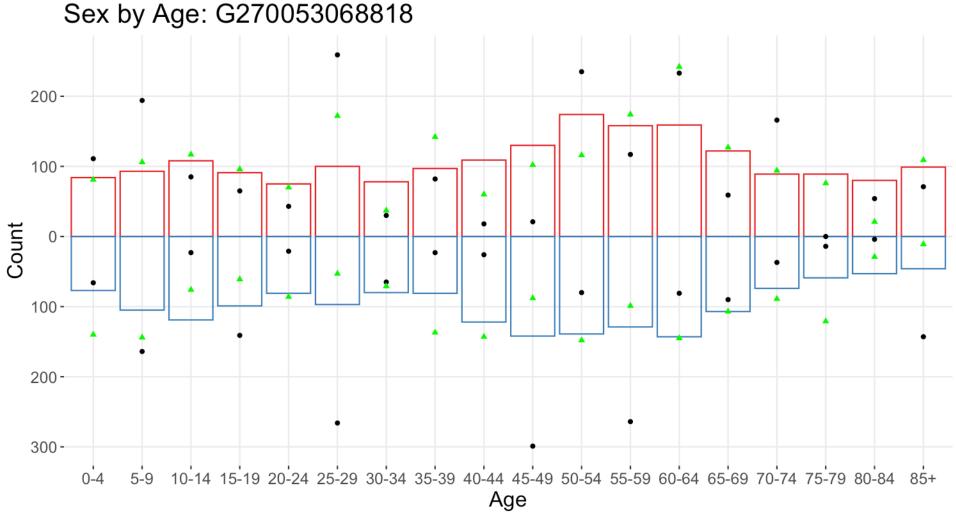

Age-adjusted rates of

- Asthma ED visits in 2010
 - Towns in Massachusetts
 - Counties in 25 states


Rate comparison

$$PercentDifference = \frac{DP_{rate} - SF1_{rate}}{SF1_{rate}} * 100$$

Percent Difference in Age-Adjusted Asthma ED Visits in 2010 (MA towns)



Source: Van Riper et al. 2020; US Census Bureau 2019; Massachusetts Department of Health 2020

Sex by Single Year of Age: Wayzata city

Source: US Census Bureau 2011; US Census Bureau 2019; Van Riper et al. 2020

Source: US Census Bureau 2011; US Census Bureau 2019; Van Riper et al. 2020

Conclusions

- Moving target Census continuously changing disclosure avoidance algorithm
- Public health analysis will be impacted
 - subpopulations with small counts
 - geographic units with small counts
- Quantifying uncertainty important

TPIN

Contact

- David Van Riper
 - vanriper@umn.edu
- Differentially private summary data
 - DDP
 - https://www.nhgis.org/differentially-private-2010-census-data
 - V20200527
 - https://nhgis.org/privacy-protected-demonstration-data